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On the Stability and Accuracy of One-Step Methods 
for Solving Stiff Systems of Ordinary 

Differential Equations 

By A. Prothero and A. Robinson 

Abstract. The stiffness in some systems of nonlinear differential equations is shown to be 
characterized by single stiff equations of the form 

y= g'(x) + X {y - g(x) }I 

The stability and accuracy of numerical approximations to the solution y = g(x), obtained 
using implicit one-step integration methods, are studied. An S-stability property is intro- 
duced for this problem, generalizing the concept of A-stability. A set of stiffly accurate one- 
step methods is identified and the concept of stiff order is defined in the limit Re(- X) -a O. 

These additional properties are enumerated for several classes of A-stable one-step methods, 
and are used to predict the behaviour of numerical solutions to stiff nonlinear initial-value 
problems obtained using such methods. A family of methods based on a compromise between 
accuracy and stability considerations is recommended for use on practical problems. 

1. Introduction. The study of numerical methods for integrating stiff systems 
of ordinary differential equations has centred largely on the concept of A-stability 
proposed by Dahlquist [1]. As Dahlquist also showed that the maximum order 
of an A-stable linear multistep method is two, subsequent research on higher-order 
methods has concentrated either on the formulation of multistep methods satisfying 
some less restrictive stability condition (e.g., Widlund [2], Norsett [3], Gear [4]), 
or on the study of other classes of integration methods which combine A-stability 
with high-order accuracy (e.g., Treanor [5], Norsett [6], Ehle [7], [8], Axelsson [9], [10], 
Chipman [11], [12] and Watts and Shampine [13]). Much of the work in this latter 
category has concerned the A-stability properties of implicit one-step methods 
([7]-[13]); several classes of such methods, containing processes of arbitrarily high 
order, have been shown to be A-stable. 

In using A-stable one-step methods to solve large systems of stiff nonlinear 
differential equations [14], we have found that 

(a) some A-stable methods give highly unstable solutions, and 
(b) the accuracy of the solutions obtained when the equations are stiff often 

appears to be unrelated to the order of the method used. 
This has caused us to re-examine the form of stability required when stiff systems 

of equations are solved, and to question the relevance of the concept of (nonstiff) 
order of accuracy for stiff problems. 
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146 A. PROTHERO AND A. ROBINSON 

We consider an initial-value problem involving a set of ordinary differential 
equations 

(1.1) y = f(x, Y), y = yo atx = 0. 

This set of equations may be approximated, in the neighbourhood of the solution 
y = g(x), by 

(1.2) y f(x, g(x)) + J(x){y - g(x)} 

= g'(x) + J(x){y -g(x) 

where J denotes the variational (or Jacobian) matrix 

(1.3) J(x) = fy(x, g(x)). 

The problem (1.1) is termed "stiff" if the eigenvalues X(x) of the variational 
matrix J(x) are such that 

(1.4) Max { Re(-X(x))} >> Max { Re(\(x))} 
X X 

over some range of x in the required range of the solution. Now, in many problems 
in which the eigenvalues are widely spread in the sense (1.4), it is possible to define 
a subset S of "stiff eigenvalues" such that 

(1.5) -Re { A(x)} >> Max I Re { A(x) } = (x), 
xes x$s 

i.e., the stiff eigenvalues S are "widely separated" from the remainder. In such a 
situation, there exists a matrix J,(x), with nonzero eigenvalues equal to the eigen- 
values X(x) & S, such that 

(1.6) JA(x) = J(x) + O(X(x)). 

The greater the separation between the two sets of eigenvalues in (1.5), the nearer 
are Eqs. (1.2) in form to the set of equations 

(1.7) y' = g'(x) ?+ sJ(x){y -9(x) 

and the more closely may we expect the Eqs. (1.7) to characterize the stiffness prop- 
erties of the system of nonlinear Eqs. (1.1). The numerical difficulties arising from 
the stiffness of Eqs. (1.1) may thus be directly related to the problems of solving 
the set of Eqs. (1.7), and these may be analysed effectively in terms of the stability 
and accuracy of numerical solutions to a single equation of the form 

(1.8) y = g'(x) ? X+(x){y -AX)I, 

obtained using an integration step-size h such that h Re(-X) >> 1. 
To a first approximation, we may neglect the dependence of X on x in Eq. (1.8). 

The rate of change of X with x is in general of the same order of magnitude as g'(x), 
and the integration step-size is such that hg'(x) <K 1, so that 

IdX/dxl << Re(-X). 

In this paper, therefore, we examine the stability and accuracy of numerical ap- 
proximations, using implicit one-step methods, to the solution y = g(x) of the dif- 
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ferential equation 

(1.9) yf = g'(x) + Xty - I 

where g'(x) is any given bounded function, for complex X such that h Re(-A) >> 1. 
We show that the A-stability property [1], while necessary, does not ensure the 

stability of solutions to Eq. (1.9) for g'(x) # 0, and we derive necessary and sufficient 
conditions for such stability (which we term S-stability). Conditions for strong 
(or stiff) S-stability are also proved. 

The accuracy of numerical solutions to Eq. (1.9) is treated by considering the 
asymptotic form of the local truncation error, proportional to h8+?1 \t, in the limit 
h Re(- X) -* co and h -O 0. A subset of stiffly accurate one-step methods is defined 
for which t = -1, and maximum values on the effective stiff order s are obtained. 

We then determine the S-stability and stiff order properties of several classes 
of implicit one-step methods, based on Gauss-Legendre, Radau and Lobatto quad- 
rature formulae. All the classes studied have been shown to be A-stable ([7], [9], [10]), 
but significant differences in their S-stability and stiff-accuracy properties give us 
good reason to prefer two particular classes for solving stiff equations, both of the 
linearized form (1.9) and, for the reasons developed above, of the general nonlinear 
form (1.1). 

2. Stability of One-Step Methods. An r-stage one-step method for the numerical 
solution of a first-order differential equation 

(2.1) Y' = f(x, y) 

may be expressed in the general form 

(2.2) Yn+ 1 = Yn ? E bk 

where 
/ ~~~~~~~~r 

(2.3) k, = hf xn + hc,, Yn 
+ 

A ajjkj (i = 1, 2, , r) 

and h = x+ - x,. The r X r array A = (aij) and the vectors bT = (b1, b2, * * br) 
and cT = (cl, c2, , cr) are constants satisfying ci = r=, a,, the values of 
which uniquely define a particular one-step method. 

We wish to categorize those one-step methods which give a stable numerical 
solution when applied with positive step-size to any equation of the form 

(2.4) yf = g'(x) + Xfy -g(x)I 

where X is a complex constant with negative real part, and where g'(x) is any function 
that is defined and bounded in some interval x C [0, xc]. To this end, it is necessary 
to define a stability property, termed S-stability, which generalizes to equations 
of the form (2.4) the concept of A-stability introduced by Dahlquist [1] for the related 
equations y' = Xy. 

Definitions. A one-step method (2.2) is said to be S-stable if, for a differential 
equation of the form (2.4) and for any real positive constant X0, there exists a real 
positive constant ho such that 
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Y.+- g(x ?1) < 1, 

Y. g(x.) 

provided yn F g(xn), for all 0 < h < ho and all complex X with Re(- X) > X0, xn, 
X E [0, xE]. If the above conditions only hold for Iarg (-hX)I < a, then the method 
is said to be S(a)-stable. 

An S-stable one-step method is said to be strongly S-stable if 

Yn+ - g(xnn) 0 
-n g(xn) 

as Re(- X) -* co, for all positive h such that Xn, xn+1 & [0, x]. 
It may be seen that, for g'(x) 0, these definitions are equivalent to the defini- 

tions of A-stability and strong A-stability for one-step methods. 
When the one-step method (2.2) is applied to Eq. (2.4), the vector kT = 

(k1, ... , k,) is given by 

(2.5) (I - hXA)k = hg' + hX yne - g} 

where gT = (g(x,), * , g(x,)) with xi = Xn + hci, g' is similarly defined, and 
eT = (1, , 1). Equation (2.5) defines k uniquely for positive h and for all X with 
Re(X) < 0 only if the array A has nonnegative eigenvalues. A one-step method 
with positive semidefinite or positive definite array A is therefore termed "well- 
defined" and, for such a method, the increment 

(2.6) bTk = bT(zI - A)Y1{fEne + g(xn)e - g + hzg'}, 

where z = (h X)- and En = n- g(Xn), is uniquely defined for all complex z with 
Re(z) < 0. 

For simplicity, we assume that the abscissae ci of the one-step methods lie in 
the interval [0, 1], although this restriction need not be made provided g(x) and 
g'(x) are defined and bounded over an appropriately wider range of x. Also, without 
loss of generality, we order the abscissae so that ci < c; if i < j. Let there be r* 
(1 ? r* ? r) different abscissae c* in c, and define an r X r* array E(z) by 

Eij = -z forci = c* 0, 

= ci for ci = c* O, 

= 0 otherwise. 

Using Eq. (2.6), the difference equation (2.2) may be expressed in the form 

(2.7) En+ = (1 - bT(A - zI)-le)En - hGo + hbT(A - zI)YE(z){G, -ZG21, 

with the dependence on the function g(x) contained in 

hGo = g(xn + h) - g(Xn) 

and the r*-vectors G1 and G2 defined by 

(GCT = g'(xn) if ct = 0, 

= (1/hc*){g(xn + hc*) - g(xn)} otherwise, 

and 
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(GAi = 0 if c = 0, 

= g'(x, + hc*) otherwise. 

Thus, the stability of the solution to Eq. (2.4) is governed by the properties 
of a difference equation of the form 

(2.8) fn+ = a(Z)En + h3(z, Go, G1, G2) 

with 

a (z) = 1 -b T( A - zI)-le 

and 

/3(z, Go, G1, G2) = -Go + bT(A - zI)Y'E(z) G1 - zG2}. 

To establish conditions for S-stability, therefore, we first prove a lemma on the 
stability of solutions to equations of the general form (2.8). 

LEMMA. Define E(z, h, E0) = a(z),E + hf(z) for all complex E0, all real h E (0, h] 
andfor all z & R, where R is the region of complex z with 0 < Re(-z) < 2. 

Then there exists a real positive ho = ho(2, Eo) < h such that 

jE(z, h, Eo)j < IEoI 

for all Eo 5 0, h & (0, ho] and all z C R, if and only if 
(1) I a(z)I < 1 in R, and 

(2) j3(z)/(l - Ia(z)) is bounded in R. 
Proof. (a) Necessity. If |a(z*)| _ 1 for z* & R, then, for any positive ha there 

exists an E0 F 0 such that JEj > 1sol at z = z* provided f(z*) F 0. If f(z*) = 0, 
- 1 Eol at z* for all E0 F 0. 
If f(z)/(1 -a(z)J) is not bounded in R, there exists z & R and EO = 1- a(z) 1 5$ 0 

such that 

3(z)j - J3(Z)J > K 
fo 1 - Ja(z) I 

for any real positive K. Since JE = 1Eol |a(z) + hf(z)/Eol, for any positive h, there 
exists K such that 1E I > I Eo. 

(b) Sufficiency. If 3(z)/(l - ja(z)j) is bounded, there exists a real positive K 
such that 

-I(z) I < K 
1- ja(z) < 

for all z E R. Now 

JEl jc(z)jI EoEI + h j1(z) = IeOI - {1 - IIa(z)I}{IEoI - h -13(z)j ' 
__ - ~~~~~~~~~~~~~~~~~jcx(z) 3 

and, if a(z)l < 1 in R, then JEj < IEol for all z C R, all Eo 5 0, and all h E (0, ho] 

where ho = Min I h, |E Io/K} . 
For a given function g(x), this lemma establishes conditions for the stability 

of solutions to Eq. (2.8). By applying the lemma, firstly to functions g'(x) = 0 (for 
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which j3 0), and secondly to g(x) with bounded g'(x), the necessary and sufficient 
conditions for A-stability and S-stability may be defined. 

COROLLARY 2.1. A well-defined one-step method is A-stable if and only if I a(z)I < 1 
for all z with Re(z) < 0. 

COROLLARY 2.2. A well-defined one-step method is S-stable if and only if it is 
A-stable and f3(z, Go, G1, G2)/(1 -I a(z)A) is boundedfor all z with 0 < Re(-z) ? z 
(any 2 > 0) andfor all g(x) with g'(x) defined and bounded in [xn, xn + h]. 

We are now in a position to state theorems which relate the conditions for S- 
stability to the values of the parameters defining a one-step method. We define the 
following limits as Izi -* 0 and Re(z) < 0 noting that the value of these limits may 
depend on the way in which the limit is taken: 

ao = Lt a(z) = 1 - Lt bT(A - zI)[le, 

a, = Ltz 1 1 - jcx(z)j}, 

b*T = Lt bT(A - zl)-E(z). 

In addition, it is convenient to identify the particular subset of one-step methods 
for which 

(2.9) Lt f(z, Go, G1, G2) = 0. 
Iz I-0 

Since hf(z, Go, G1, G2) represents the local truncation error, methods satisfying 
condition (2.9) may be termed stiffly accurate. It is readily shown that for a method 
to be stiffly accurate it must include an abscissa c* = 1 and also 

bo* T = (0,0 . .. 0, 1) = e T* 

It follows from the definition of bo* that, if a method has a single abscissa Cr = 1 
and a nonsingular array A, the conditions for it to be stiffly accurate are 

Cr = 1, bt = ari (i= 1, * ,r) 

in which case kr = hf(x.+1, y.+1). 
THEOREM 2.1. A well-defined A-stable one-step method is S-stable if and only if 
(a) Iaol < 1 andbo* is finite; or 
(b) Iaol = 1, a1 ? 0, and the method is stiffly accurate. 
THEOREM 2.2. A well-defined S-stable one-step method is strongly S-stable if and 

only if it is strongly A-stable (ao = 0) and stiffly accurate. 
Proofs. Let R be the region of complex z with 0 < Re(-z) < z. 
(la) If the method is A-stable and laol < 1, (1 - Ia(z)j)-1 is bounded in R. 

f(z, Go, G1, G2) is finite for all z C R and for all bounded g'(x), and is bounded if 
and only if bo* is finite. Hence, by Corollary 2.2, the method is S-stable if and only 
if bo* is finite. 

(Ib) If the method is A-stable, Iaoj = 1 and a1 # 0; z(l - a(z)1)- is bounded 
in R. Since z-1f(z, Go, G1, G2) is bounded in R for all bounded g'(x) if and only if 
Ltllo f(z, Go, G1, G2) = 0, by Corollary 2.2 the method is S-stable if and only if 
it is stiffly accurate. 

If Iaol = 1 and a1 = 0, it is necessary for z72-(z, Go, G1, G2) to be bounded in R. 
This requires that bo*TG - Go and bo* *TG = b* TG2, where bo**T - 

LtlO z-lfbT (A - zI)- E(z) - bo*T}. If bo*TG, = G forallboundedg'(x), bo* = er*, 
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so that we require bo**TG =- e* TG1 = g'(xn + h). Since g'(xn + h) is not an element 
of G1 for positive h, this identity cannot hold for all bounded g'(x). 

(2) From Eq. (2.8), Ien+I --> 0 as Izi -? 0 in R if and only if ao = 0 and 
Lt, zi. f,(z, Go, G1, G2) = 0. 

3. The Stiff Order of One-Step Methods. Having established conditions for 
the stability of numerical solutions to equations of the form (2.4), we consider now 
the accuracy of such approximations. As Re(-X) -* co, the true solution to Eq. 
(2.4) tends to g(x) for x > 0, regardless of the initial condition at x = 0. Thus, if 
Eq. (2.4) is stiff, a measure of the accuracy of a one-step method is provided by the 
difference 

(3.1) In = Yn+, g(x+) 

where yn+1 is the solution at xn+i 1Xn + h to the initial-value problem 

(3.2) Y = g'(x) + Xly - g(x)}' y = g(xn) at x = xn. 

The local truncation error 1, is dependent both on h and X, as well as g(x), and the 
asymptotic dependence 

In cc he+l'X as Re(-hX) - o and h -* 0 

defines the stiff order (s, t) of a one-step method. In this section, we derive some 
general results on the stiff order properties of one-step methods. 

The local truncation error In is obtained from Eq. (2.7) by setting En = 0, so that 

(3.3 In = -hGo + hbT(A - zI)'E(z){G1 - zG2} 
= h13(z, Go, G1, G2). 

The term b T(A -zI)-'E(z) may be expanded as a power series in z, giving 

(3.4) bT(A - zI)-'E(z) = Z z-m dT 
q-o 

where m ? 0, 

dT = Lt zmbT(A - zI)Y'E(z), 

dT= Lt zmbT(A - zI)-Y{(A - zI)-'E(z) + E(1) - E(0)}. 
I z I 

Therefore, we have 

(3.5) h 1i = -Go + doGlz m + E {d G1 - dqIG2Iz 
q=1 

To establish the stiff order (s, t), we consider the limiting form of Eq. (3.5): 

h'Fin ': he 'z1 as h, jzj -> 0. 

In the following theorems, we assume that g(x) is sufficiently differentiable and 
denote the ith derivative at x = xn bygn.s). The notation ci T = (cl*%, C2*i, * *, C*i) 
is also used. 

THEOREM 3.1. A stiffly accurate one-step method has stiff order (s, -1) with 
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s ? r' - 1, where r' (? r*) is the number of nonzero elements of d,. 
Proof. For stiffly accurate methods, Lt, zi-O g(z, Go, G1, G2) = 0. Thus h-'in 

ztdTG, - dTG2} as IzI -- 0, and since do0 b0 * = er, then doTG2 = g'(X., A 

Expanding g'(xn+1) and G, about Xn gives 

hIF'n -* ha z -I 1) 2+ 
{TC*, - (q' + 1)} as Izi, h -> 0, 

where dTCa* = q for q = 1, 2, ,q 

4 q for q = q' +1. 

Since q' < r', then s = q'-1 < r' - 1 and t = -1. 
THEOREM 3.2. A one-step method which is not stiffly accurate has stiff order (s, m) 

with s < r' for m = O and s < m + r' - for m > 0, where r' (< r*) is the number 
of nonzero elements of do. 

Proof. For m = 0, 

h-*Il d - Go as Iz I - 0, 

ha (q- + 1)! Gina+l) {doca - 1} as h -> 0, 

where 

doC*l= 1 for q = 1, 2, ,q 

54 1 forq= q'+1. 

Since q' < r', s = q' < r' and t = m = 0. For m> 0, 

h- 1 In -- z--dOT G, 3- ha tz-m g (a + 1 ) dT C* 

V' n ~ -* ~z" (q' + 1)! 
0 

where 

dTC*e= 0 for q = 1, 2, q, 

0 0 forq = q'+ 1. 

In this case, q' < r' - 1, so that s = m + q' < m + r' - 1 and t = m. Since 
m = 0 for S-stable methods, it follows that 

COROLLARY 3.1. S-stable methods that are not stiffly accurate have stiff order 
(s, 0) with s < r', where r' are the number of nonzero elements of do. 

Also, since (do)1 = 0 if cl* = 0 and A is nonsingular, we have 
COROLLARY 3.2. Methods that are not stiffly accurate with cl* = 0 and nonsingular 

array A have stif order (s, m) with s < r* - 1 for m = O and s < m + r* -2 for 
m > 0. 

4. The S-Stability and Stiff Order of Some Classes of One-Step Method. 
In this section, we consider the S-stability and stiff order of several classes of pre- 
viously published A-stable one-step methods based on quadrature formulae. The 
processes considered are the class G methods of Butcher [15], based on Gauss- 
Legendre, classes IA and IIA of Ehle [8], based on Radau, and, finally, classes I11A 
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TABLE 1 

Summary of the stability, stiff accuracy and orders of 
some classes of one-step methods 

Stability Stiff Order 
Quadrature Stiffly Order 

Class A Strong-A S Strong-S Accurate p s t 

Gauss V 2r r 0 
Radau IA V V V 2r- 1 r- 1 0 
Radau 11A V V v V v 2r- 1 r- 1 -1 
Lobatto I11A V t V 2r - 2* r - 1* -1 
Lobatto IIIB V 2r-2 r- I +1 
Lobatto 11C V V V V V 2r-2 r-2 -1 

The absence of an entry indicates that the property does not hold. 
* The methods of class I11A have k, = hf(xf, yn) and k, = hf(xn+, Yn+A) so 

that, except for n = 0, each step only requires r - 1 evaluations of f(x, y). 
t This class is S(a)-stable for a G (0, r/2). 

and IIIB of Ehle [8] and class IIC of Chipman [11] based on the Lobatto quadrature 
formula. The A-stability of these classes has been determined by Ehle [7] and Chipman 
[12] inter alia, and the S-stability and stiff order properties are summarized in Table 1 
with more detailed considerations presented in the form of a collection of theorems 
in this section. 

Before considering the theorems in detail, we present some notation and also 
two lemmas which will assist in the proof of some of these theorems. We define 

121 

1 c, ... Cl C1 !c1 .. 
-cl 

vi= : , Ci= 

1 C , c7 1Cr 2C, ... Cr 

to be r X i matrices, with the suffix i denoting the number of columns, 

Pr 2 r 2 

I 

r 

to be r X r diagonal matrices, and 

iT = :1, T2 li, Y [1, 2, ,i 
to be i vectors. We take e to be the unit vector and e, to be the vector having the 
ith element unity with the remaining elements zero: the length of both these vectors 
is assumed to be that applicable at the time of use. We also use Butcher's notation 
[15] for representing certain conditions satisfied by the parameters aii and bi. Finally, 
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we omit the asterisk from the abscissa ci and also from the number of stages of the 
methods, since all classes under consideration here have distinct abscissae. 

LEMMA 4.1. An A-stable one-step method is S-stable if A is positive definite and 
ao < 1. 

LEMMA 4.2. A strongly A-stable one-step method is strongly S-stable and stiffly 
accurate if 

(1) A is positive definite, 
(2) b TA1 = 

(3) the method contains a single abscissa c, = 1. 
Proof. 

b*T = Lt bT(A -zI) 'E(z) 
I z I -.0' 

= bTA-1E(O)= e.E(O) = eY. 

Consequently, the method is stiffly accurate and hence, by Theorem 2.2, strongly 
S-stable. 

THEOREM 4.1. The processes of class G are not S-stable and have stif order (r, 0). 
Proof. For this class, IaoI = 1, since a(l/z) reduces to the diagonal Pade approxima- 

tion to exp(1/z). As this class does not have an abscissa of unity, it cannot be stiffly 
accurate, so, by Theorem 2.1, the processes are not S-stable. Now 

dT Lt bT(A - zI)-1E(z) = bTA'E(0) 
-.0 

= Tr(A Vr)-'E(O) by B(r) 

= TrCr 1E(0) by C(r) 

= 1TYr V1 = eT Vr- == t _ O. 

Since this class does not contain an abscissa of unity, we have t = 0. As doTVr = eT, 

by Theorem 3.2, s = r. 
THEOREM 4.2. The processes of class IA are S-stable and have stiff order (r - 1, 0). 
Proof. The S-stability of this class is a direct consequence of Lemma 4.1. Since 

this class does not have an abscissa of unity, it cannot be stiffly accurate and so, by 
Corollary 3.2, the stiff order is (s, 0) where s < r - 1. Now 

do Vr-_ = bTA 1E(0) Vr_ 

= bT A-'Cr-lrr*-l 

= bT VriFr* by C(r - 1) 

= yY1rPr* by B(r - 1) 
T 

Hence, by Theorem 3.2, s = r - 1. 
THEOREM 4.3. The processes of class IIA are strongly S-stable, stiffly accurate 

and have stiff order (r - 1, -1). 
Proof By B(r), 

b = Tr er Cr Vr 

= eTA by C(r). 
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Hence, by Lemma 4.2, the class is strongly S-stable and stiffly accurate which implies 
it has stiff order (s, - 1) with s < r - 1. As E(O)V, = Crr*, 

dT V = bTA-2E(O) Vr = eYTA'crr* 

- eTVOrvr* by C(r) 
- Tr 

e Or* 

Hence, by Theorem 3.1, s = r -1. 
THEOREM 4.4. The processes of class I11A are stiffly accurate, have stiff order 

(r - 1, -1), and are not S-stable but are S(a)-stable for a E (0, 7r/2). 
Proof. For this class, laol = 1 and a, = 0 in the limit Im(X) - o (diagonal 

Pade approximation [12]), and hence, from Theorem 2.1, this class is not S-stable. 
However, for a (0, 7r/2), a, 3 0 and hence by Theorem 2.1 this class is S(a)-stable. 
Now 

b*T- Lt bT(A - zI)'E(z) 
1-4 

= Lt yYT V '(A - zI)-1E(z) by B(r) 
I z 4-0 

= Lt rT(C - Z Vr)'E(z) by C(r) 
I z I so 

= Tr~ Q where Qii = c-'/] (i, I = 1, 2, * * , r). 

As YrT = To it follows that b,* = er, so that this class is stiffly accurate. As it is 
stiffly accurate, by Theorem 3.1, it has stiff order (s, - 1) with s ? r - 1. 

Let A* be the principal minor of A and a*T = (a21, , arl), so that 

A =[0 4 

ta* A* 

and let C* and V* denote the corresponding nonsingular minors of Cr and Vr re- 
spectively. Since, by C(r), A Cr Vr ', it follows that A* = C* V*-'1. Now 

(A - I)-' 
_-Z 

0 

z-1(A* zI)yla* (A* -zI) 

and 

(A - zI)-'E(z) + E(1)- E(O) = A ( 
V-( A* -zI)-'a* ( A* - zI)_l D(c), 

where D(c) is a diagonal matrix with elements ci (i = 2, * , r). By B(r), bT = T7V,- 
= erTCr Vr = er TA, so that 

bT - zenT = er (A -zI) 

and 

bT(A - zI) ' = eT + zeT(A - zI)' = eT + [er1 A*'a*, 0,. , 0] + 0(Z). 
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Hence 

di = Lt bT(A - zI)-Y{(A - zI)-YE(z) + E(1)- E(-)} 
I z I-_O 

= [-eT iA*-la*, eT 1 A* D(c)] 

= [1 - eT lA*lD(c)e, eTI A* D(c)] 

since a* = {D(c) - A* }e. Thus, since A* - D(c)V* = A* C*D(i) = V*D(i) where 
D(i) is the diagonal matrix with elements 2, * , r, 

d[ Vr = [1, e 1 V*D(i)] = TT 

Hence, by Theorem 3.1, s = r - 1. 
THEOREM 4.5. The processes of class IIIB are not S-stable and have stiff order 

(r - 1, 1). 
Proof. Let 

A = $ 

, a*T 0J 

where A* may be shown to be a nonsingular minor of A. Then 

(A -ZI)1 = [ 
(A* -zI)-1 0 

(z- 1a*T (A* - zI)-' _z-l. 

Let b* denote the first (r - 1) elements of b, and { }, denote the ith component of 
the vector. Then 

dT = Lt zb T(A - zI)Y1E(z) 
Iz I-0 

= Lt [-z{AT(z)}1, {AT(z)D(c)}j, - br] (j = 2, * * , r - 1), 
I z10 

where A T(Z) = (zb* + bra*)T(A* - zI)- 1 and D(c) is a diagonal matrix with elements 
c;(i= 1, .r- 1), and so 

dT = [0, br{a*TA4* lD(c)}i, -br] (j = 2, * , r - 1). 

Since, by B(r), br 3? 0, doT 3 0 so that t = 1. It follows that bo* is not finite and the 
class is not S-stable. 

By C( - 2), AVr,2 = Cr-2 so that 

A * Vr-2 = Cr-2 and a*Vr-2 Tr-2, 

where 

Vr--2 V,72] and Cr-2 

Thus, since D(c)Vr-2* = Cr-2*]r-2* 

doT V-2 
= br[a*TA* 1D(c), 1] Vr_2 

= br[a* A*-C'r-2Fr*-2 - e] br[r-2]rp* - eT] = 0. 

Hence, s = r - 1. 
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THEOREM 4.6. The processes of class IIIC are strongly S-stable, stiffly accurate 
and have stiff order (r - 2, -1). 

Proof. From the derivation of the coefficients of this class, bT = erTA, and so, 
by Lemma 4.2, the class is strongly S-stable and stiffly accurate. Since this class is 
stiffly accurate, by Theorem 3.1, it has stiff order (s, - 1) with s < r - 1. Now 

d Vr = b A E(O) Vr = e, A CrPr 

=e VFr* by C(r- 1), where V= V, v], 

= [eT, vr]r* 

= [Tr_, 1] sinceVr = I/r (Chipman [12]). 

Thus, by Theorem 3.1, we have s = r - 2. 

5. Discussion. To conclude this paper, we consider the implications of the 
various stability and accuracy concepts that we have defined. At the same time, we 
compare the properties of the classes of one-step methods considered in the previous 
section, and relate these properties to the performance of the methods on a test 
problem of the form (2.4). 

It should be borne in mind that, in discussing the behaviour of solutions to a 
stiff equation (2.4), we are at the same time discussing the way in which the solutions 
to the stiff components of nonlinear systems of differential equations tend to behave. 

TABLE 2 

Dependence of h' on I XI and on I 1, h' cc I x HlEnIm, as Re(-X) co 

/ m 

1 1 
Gauss r + 2 r + 2 

Radau IA 0 r 

1 1 
Radau 11A r r 

Lobatto i11A 0 + 

2 1 
Lobatto IIIB r+1 r+1 

1 1 
Lobatto IIIC 

r - 1 r- 1 
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FIG. I - The apparent order p't LtrunGcao ero of various one-step methods when solving 

example I. GO signifies Gauss 2 -stage methods etc. 
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FIG.- 2 - Locoal truncation errors Lo for various one-step methods that are 
not stiffly accurate,when solving example I with h=-O1 
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In Section 2, an S-stability property for a one-step method is defined which 
ensures that a range of positive step-sizes (0, h) exists which gives stable solutions 
to Eq. (2.4) with bounded g'(x), for any X with Re(X) ? - X < 0. Thus, if h' = 
h'( , 1,En g) denotes the upper limit to the range of stability (0, h') for given X, S- 
stability guarantees that h' -O 0 as Re(- X) -* oo, while, with strong S-stability, 
h'- as Re(- X) -* o. 

The asymptotic dependence of h' on X and on lEnj as Re(- X) -* a, which is 
of the form h' c I X1 I IEEzIm is given for various r-stage one-step methods in Table 2. 

The negative values of l for the Gauss and the Lobatto class IIIB methods reflects 
the lack of S-stability of these classes (Table 1). In order to give stable solutions to 
Eq. (5.1), the Lobatto IIIB methods, in particular, would require considerable reduc- 
tions in the step-size as the stiffness, Re(- X), in Eq. (5.1) increases. While the inverse 
X-dependence of the Gaussian methods is fairly weak, the stability of this class on 
very stiff practical problems is not as good as the S(a)-stable Lobatto I11A class, 
even though the A-stability properties of the two classes are identical. The positive 
i-dependence of the Radau IIA and Lobatto IIIC method is a measure of the strong 
S-stability of these stiffly accurate classes. 

In Section 3, the asymptotic form of the local truncation error, as h Re(- X) - , 
is derived as 

In ac h, Xtg 

The upper limits derived for s, and the s-values obtained for the various classes 
indicate that the effective order of one-step methods applied to Eq. (2.4), with Re(-h X) 
large, is generally much lower than the order p that can be achieved for nonstiff 
problems. Figure 1 shows the apparent order of various methods when solving 

Example 1 (Seinfeld et al. [16]). 

yI = g'(x) + XI y - x) y = g(O) at x = 0. 

g(x) = 10 - (10 + x)e- , X real. 

For one-step methods that are not stiffly accurate, the change in the effective 
order results in a much lower level of accuracy for h Re(- X) large compared with 
that in the nonstiff region (Figure 2). In contrast, the errors given by the stiffly ac- 
curate methods (Figure 3) tend to zero as Re(- X) -* a, so that the reduction in 
order in the stiff region is offset, to a varying extent, by the inverse dependence on 
I XI. Clearly, the stiff accuracy property of one-step methods increases in significance 
with the degree of stiffness in Eq. (2.4). 

If we use a one-step method of stiff order (s, t) to solve Eq. (2.4) with g(x) a 
polynomial of degree (s - t), the error equation (2.8) is independent of x and the 
dependence of the global error en on h and I XI as Re(- X) -o may be determined 
(Table 3). For strongly A-stable methods, the global errors tend to the local truncation 
errors, while for ao = - 1, successive errors show a cancellation effect. For ao = 1, 
however, en increases linearly with n. 

Comparing the properties of the various classes of one-step methods, the Lobatto 
I11A methods would seem to be the most accurate of the S- or S(a)-stable stiffly 
accurate classes, taking into account that the r-stage I11A process is equivalent, in 
terms of computational effort, to an (r - 1)-stage process. In particular, I11A methods 
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TABLE 3 

Asymptotic dependence of E7, as Re(-) -)o 

r even r odd 

Gauss nh r+g(r+l) hr+lg(r+l) (n odd); 
nhrl Xr-lg(r+l) (n even) 

Radau IA hrg (r) hrg (r) 

Radau IIA hr I XI1g (r gh IIg(r+) 

Lobatto IIIA hrIX-1g(r+l) (1i odd); nh 1rI1lg(r+1) 
nh r-l1It-2g(r+1) (n even) 

Lobatto IIIB h"IXg(r-1) (n odd); nh rijjg(r-l) 

nhr-lg(r-1) (n even) 
Lobatto IIIC hr-IIXI-Ig(r) h r-llixi-Ig(r) 

with an even number of stages should have a small error propagation effect and, 
further, for the IIIA methods there is no practical difference between S(a)- and 
S-stability on real problems. Note that for r = 2 we have the trapezoidal rule. 

Strongly S-stable methods have advantages in that the local truncation errors 
are very quickly damped out for h Re(- X) large, and the methods are likely to remain 
stable when applied to equations of the form (1.8) having variable X(x). Gourlay [17] 
has shown that for Eq. (1.8) with g(x) = 0 and Re(- X(x)) large but decreasing, the 
trapezoidal rule is only stable for a restricted range of step-sizes h. Similar restrictions 
must apply to all one-step methods, involving more than one abscissae, for which 
aol = 1. 

The suggested replacement of the trapezoidal rule by the implicit midpoint rule 
(the single-stage Gaussian process G(1)) [17] overcomes the stability problem as- 
sociated with X(x), but since the G(1) method is not stiffly accurate (or S-stable), 
there can be a considerable loss of accuracy on stiff problems (Figure 4). We would 
recommend replacing the Lobatto IIIA methods by other classes of methods that 
are stiffly accurate and either strongly S-stable or S-stable with 1a?o < 1. 

Of the methods that are stiffly accurate and strongly S-stable, the Radau IIA 
methods should be more accurate than the Lobatto IIIC processes (Figure 3). Note 
that, for r = 1, the IIA process is the backward Euler method. However the IIA 
processes are significantly less accurate than the IIIA processes, and a compromise 
between accuracy and strong S-stability, giving a class of stiffly accurate methods 
with 0 < IJaoI < 1, is worth considering. 

One such family of intermediate methods may be defined by 

(5.1) A L 01 bT = (I - y, y), 

1 -Y y eJ CT (0, 1), 

with 0.5 < -y < 1. This first-order method is effectively single-stage, with a, = 

-(1 - -y)/-y. It may be easily shown to be S-stable and stiffly accurate, with generally 
smaller truncation error than the IIA(1) method, as shown in Figure 4 using -y = 
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0.55. The authors have in fact used this method extensively (with y = 0.55) to obtain 
stable solutions of reasonable accuracy to large nonlinear systems of stiff equations 
arising in the field of chemical kinetics [14]. 
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